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Abstract

The powerful electro-mechanical coupling attribute of piezoelectric materials enables these materials to act as effec-
tive actuators. Using this attribute, a smart single-lap adhesive joint was developed by anti-symmetrically surface bond-
ing piezoelectric patches onto a typical single-lap joint. The forces and bending moments at the edges of the developed
smart joint can be adaptively controlled by adjusting the applied electric field in the piezoelectric patches, thus reducing
the stress concentration in the joint edges. In order to further verify the effect of surface bonding of the piezoelectric
patches, a first-order shear deformation theory based analytical model was developed to evaluate the stress distribution
in the adhesive layer. It was established that the piezoelectric patched joint could significantly reduce the stress concen-
tration in the joint edges. The influence of location and size of the piezoelectric patches was also investigated. Further-
more, the state-space method was used to obtain the analytical solution. A series of finite element analyses were also
carried out to verify the integrity of the developed solution. Results from the computational analyses were in good
agreement with those obtained from the proposed results, thus validating the solutions.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Generally, a single-lap adhesively bonded joint system is composed of either two identical or two non-
identical adherents, and an adhesive layer, as shown in Fig. 1(a). The applied loads on the adherents are
transferred onto the adhesive layer by shear and/or peel stresses. The geometric nature of the joint produces
stress concentrations at the end regions of the adhesive layer. Several theoretical and numerical analyses
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Fig. 1. (a) A typical adhesively bonded single-lap joint, (b) the newly developed smart adhesive bonding single-lap joints.

have been previously conducted to investigate the stress distribution in the joint. One of the earliest such
works cited in literature is the work of Goland and Reissner (1944). Goland and Reissner (1944) assumed
the adhesive layer to be a relatively flexible patch, and they obtained a two-dimensional, elasticity based,
analytical solution for assessing the stress distribution in a lap joint. Subsequently, several researchers
developed various more sophisticated, and more capable, theoretical models for evaluating the stresses
in various joints. The works of Cornell (1953), Allman (1977), Delale et al. (1981), Roberts (1989), Cheng
et al. (1991), Oplinger (1994), Taheri and Zou (2004), and Zou et al. (2004) are representative of such
works. On the other hand, the numerical models, including FEM and FDM, were also developed to handle
the more complicated geometry and configurations, and also to validate the existence of stress concentra-
tion in the edges of the adhesive layer (Hart-Smith, 1973; Carpenter, 1973; Adams and Wake, 1984; Lin and
Lin, 1993; Tsai and Morton, 1994; Bogdanovicha and Kizhakketharab, 1999; Andruet et al., 2001; Gon-
calves et al., 2002; Osnesa and Alfred, 2003). All of these works have effectively verified that the stress con-
centration always exists in the adhesive layer of a joint, and that it is the main cause of joint failure. In order
to reduce the effect of stress concentration in a joint, some works (Hart-smith, 1983; Roberts, 1989; Cheng
et al., 1991) were carried out to theoretically demonstrate that the stress distribution in an adhesive layer
could be reoriented by adjusting the adherents’ thickness, length, and material properties. Engineers have
also developed other practical solutions to reduce concentrations of the shear and peel stresses, such as
rounding off sharp edges, spew fillets, and tapering of the adherents (Hart-smith, 1983; Roberts, 1989).
On the other hand, with the use of reinforcing patches, one can also reduce the stress concentration effect
in adhesives. For example, Albat and Romilly (1999) constructed an elastic reinforced, double symmetric,
bonded joint to reduce the effect of the stress concentration on the basis of the shear lag model.

It should be noted that most of the previous techniques have been based on mechanical methods. Here,
we propose the use of an electro-mechanical coupling attribute of piezoelectric materials (actuators), to
accomplish the reduction of the stress concentration. It is well understood that piezoelectric materials with
strong electro-elasticity coupling characteristics can be easily designed as sensors or actuators. As a com-
mon application, piezoelectric materials have been utilized to successfully control and monitor the static
shape deformation and vibration characteristics of various structures (see for example Crawley and de Luis,
1987; Lee and Moon, 1990; Molyet et al., 1999; Liu et al., 1999; Wang and Wang, 2000; Bruch et al., 2000;
Cheng et al., 2000; Wu et al., 2001; Luo and Tong, 2002). All previous experimental and theoretical works
have confirmed that the strain can be conveniently controlled by adjusting the electric field applied to the
piezoelectric layer. As an application of piezoelectric materials in joining systems, Cheng and Taheri (sub-
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mitted for publication) recently presented the concept of a smart adhesively bonded joint system by inte-
grating the piezoelectric patches. Furthermore, they showed theoretically that by adjusting the electric field
in the surface bonded piezoelectric layer one can effectively reduce the stress concentration in a single strap
joint.

This paper presents the continuation of our previous work and considers the anti-symmetrical or quasi-
anti-symmetrical structural characteristic of a single-lap joint. We constructed a smart single-lap joint sys-
tem integrated with anti-symmetric surface bonded piezoelectric patches as shown in Fig. 1(b). In order to
analyze the action of the surface bonded piezoelectric patches, we first determined the smart joint-edge
shear force and bending moment under the action of combined mechanical and electrical loadings. Fur-
ther, based on the first-order shear deformation theory (FOST), a theoretical model was developed for
evaluating the peel and shear stresses in the adhesive layer, thus optimizing the effect of the applied electric
field on reducing the stress concentration of the joint. The analytical solution to the problem was obtained
by the state-space method, which was used to obtain the peel and shear stresses in the adhesive layer.
Finally, some numerical examples were calculated to validate the action of the surface bonding piezoelec-
tric patches.

2. A smart single-lap joint under combined mechanical/electric loads

In general, a single-lap adhesive-bonded joint consists of two adherents and an adhesive layer, as shown
in Fig. 1(a). In the case of identical adherents, the single-lap joint is an anti-symmetric joint system. Even if
the adherents are non-identical in properties and geometry, the single-lap joint can be approximately re-
garded as an anti-symmetric joint system, hereafter referred to as a “quasi-anti-symmetric” joint. Accord-
ing to Roberts’ investigation (Roberts, 1989) on the influence of joint-edge loads on the stress
concentration, the peel and shear stresses of a single-lap joint distributed symmetrically and their peak
in the joint edges can be reduced by varying the applied load. Therefore, our intention was to integrate
a single-lap joint with an electro-mechanical coupled piezoelectric material, thus forming a novel smart sin-
gle-lap joint system, as shown in Fig. 1(b). Based on the developed smart joint system, the applied joint-
edge loads can be adaptively adjusted by changing the electric field applied to the surface bonded piezoelec-
tric patches, thus decreasing the effect of stress concentration in the joint edges, as will be further explained
in the subsequent sections. Undoubtedly, the location and size of the patches would have a significant effect
on the resulting stresses. Following the authors’ previous work, anti-symmetric surface bonded piezoelectric
layer patches were used to construct a new smart single-lap joint system.

Considering the proposed smart single-lap joint subjected to an axial force, as shown in Fig. 2, we as-
sume that the plane section in each adherent would remain plane to carry the applied force and bending
moment. Then, by considering the representative segment model as shown in Fig. 3, the 1-D equilibrium
equations for the different parts of the smart single-lap joint can be derived on the assumption of the clas-
sical plate theory as follows (Timoshenko and Woinowsky-Krieger, 1959):

Fig. 2. A representative segment model of a beam subjected to combined bending and axial forces.
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Fig. 3. The coordinated system of the smart single-lap joint with the anti-symmetric surface bonded piezoelectric patches.
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where Dy, D»>, D123, Diag, and Dy, represent the flexural rigidities of the different segments of the smart
joint respectively, as shown in Fig. 3, and can be obtained as follows:

by B Bk Bl +de) —dh) | B —dn)’ +d)

12(1 — ,u%)’ 12(1 — ,u%)’ 3(1 — 'u%) 3(1— 'u%) ;

Dyps = Es[(hs + hy +di23)’ — (hy+d123)’]  Ea[(hy 4 din3)’ — 3] N E\[d},; + (h — din)’] '

3 =) 3(1—48) A=)

Diyy = El(hs + i — din)’ — (h —di)'] | Eildiyy + (1 — d1y)] +E2[(h2 —di)’ = d},,] .
3(1-453) 3(1—42) 31— @)

Moreover d)», d»3, and d)»4 are the neutral planes of the different parts of the smart joint, and Np; and M,
(i =3, 4) denote the resultant forces and moments induced by the electric field applied to the ith surface
bonded piezoelectric patches presented by

Zil Zk+1
Npi = —/ e;lkE3 dz7 Mpi = —/ e;lkE3ZdZ, (2)
z, Zk

i0

where E3 = (—V;/h)[H(x — x9) — H(x — x1)], with H(x—x,) being the Heaviside step function.
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Further, the joint end boundary conditions of the smart single-lap joint system can be presented by
W =w =0 atx =0
W7=W7‘xx:O atx7:O

and the continuity conditions between the different parts must be satisfied as follows:

(1) At the boundary x; =/; and x, = :
Wi =Wy Wiy =Wy, Diwiw =Diwsw +p(h/2 —di);
Dywi e — pWy , = —[DiaWa e — pWy .

(2) At the boundary x; =0 and x3 = Iy
Wy = W3 Wax=Wiy DW= Diaws o + M3(x) + p(din — din);

6Mp3 (X)
ox

Diowy, e — PWy , = — | D123W3 xex + —(P+Np)ws .

(3) At the boundary x3 =0 and x4 =Is:

W3 =Wa; Wi =Way; DiaWo e + Mps(x) 4+ p(dia — din3) = DioWy s
OM 3 (x)
Ox
(4) At the boundary x4 =0 and x5 = I

Di23ws o + — (P + Np3)ws x = —(D1aWg xer — pWy.,)-

Wi =Ws; Wiy =Wsy; DiWsw+p(dis —diz) = DiaWs s + M ps(x);
OM 4 (x)

Diows xox — pWy , = — [D12aWs xox + o (P4 Npu)ws «|.

(5) At the boundary x5 =0 and x¢ = I;:
Ws = We;  Ws = Wex; DioaWs e + Mpa(x) = DooWe xx + p(di2a — dr2);
OM 4 (x)
Ox
(6) At the boundary x¢ =0 and x; = /5

DiogWs, xxx + — (P + Npa)ws x = —(D0We xxr — PWs,)-

We = W73 Wex =Wryi DiWe e = Dowr e + plha/2 — dis);

D124We xex — PWe = —(D2aW7 ec — PW7 ).

Obviously, for the governing fourth-order differential equation (1), the general analytical solution can be
carried out in the following forms:
For the elastic parts:

Wl'(x,') = A[ —+ B,'xl' + Ci Sinh[aix,'} -+ Di COSh[O([xi] (l = 1, 2, 47 6, 7) (3a)
For the electro-elastic parts:
W,—(x,-) = Ai + B,-x,- + Ci Sinh[oc,-x,-] + Di COSh[OCix,'] + Wj (.Xl') (l = 3, 5), (3b)

where A4;, B;, C;, and D, are the unknown constant coefficients, determined by the boundary conditions. The
variable wi(x;) denotes the specified solutions due to the piezoelectric coupling effect and is selected based
on the relative governing equations.
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After substituting the general analytical solution Eq. (3) into the relevant boundary conditions, the coef-
ficients 4,, B;, C;, and D, can be calculated and then the joint-edge applied moments M, M,, and the shear-
ing forces Q;, O, in the smart single-lap joint can be obtained by

My = —p, 2 My = D0 (4a)
= — — - . a
1 11 ax% . ) 2 22 ax% . I

x1=[ x7=l,
01 = Duwia —pwi ), 5 O = Dowr —pwr )|, - (4b)

3. Stress analysis in the adhesive layer of the developed smart joint

In this section, we analyze the peel and shear stresses in the adhesive layer on the basis of the first-order
shear theory (FOST). Considering that the function of the piezoelectric patch is to only supply the addi-
tional required force and moment, the thickness of the piezoelectric layer would be relatively thin in com-
parison to the adherents. Therefore, the stiffness contribution from the piezoelectric patches is relatively
small, and may be neglected when analyzing the stress distribution in the adhesive layer. Here, we assume
that the piezoelectric patches cover the entire joint surface. Therefore, based on the above assumption, the
stiffness of the adhesive layer between the piezoelectric layer and the adherents can be assumed to be neg-
ligible while analyzing the stress distribution in the adhesive layer.

The infinitesimal elements of the joint section are depicted in Fig. 4. In terms of the static equilibrium
conditions for each layer as shown in Fig. 4, we can obtain the 1-D fundamental equilibrium equations
for any segment of the smart single-lap joint by assuming a unit width to the whole beam (with a rectan-
gular cross section) as follows:

In the top adherent of the joint:

ON, . OM, he 00, B

g—‘rfl—o, E_Qt—i_zrl_()’ g—f—al—o. (Sa)
In the bottom adherent of the joint:

ON,, . oM, hy 00, _

E—Tl—o, E—Qbﬁ—?‘fl—o, E—O'l—o. (Sb)

where the resultant forces Ny, Ny, O, Op, and moments M;, My, of the top and bottom adherents can be
obtained from the constitutive equations and relationships between the strains and assumed mid-plane dis-

Qr+dQ;

A
Nt 4—% h Tb %’Nﬁ'dNt a

M Qt +> Me+dMy
T

[ o h b
F—» a
n Yo a
A QutdQy

A
N 4% h %’Nb"'dNb ¢
b I’ ' 2

Mp Qb Mp+dM,

Fig. 4. The stresses and forces on the infinitesimal segment of the joint system: (a) top layer (adherent), (b) adhesive layer, (c) bottom
layer (adherent).
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placements (u, wy), (up, Wp), and rotations ¢y, and ¢, in terms of the first-order shear deformation theory as
follows:

? * * * . (Ou 0, Ouy, . Ou
]\[(:‘/'J%O'tdZ:/_h2 CtllgtdZ:/_);_lcﬂ](axt"‘ ax)dZ hlctll ox A”F;’ (68.)
= [Lote= [ e (Grre e et =g G (6b)
Y i
hy Iy
5 [? 5 [T, (0w _ Shiciss (0w . (O
Qt_g/%lgxzdz—g/ﬁc}ﬁ(é_x ¢>d ——6 6_x+¢ Bll ax +¢t , (60)
h
i Ou 0¢ Ou ., Ouyp
Nb:/hbabdz / Corépdz = / Cb11< °+ ab)dz hbcb“ab Azzé_x’ (6d)
Iy
7, (Ou 0¢ Ser O . 0
My = /hb O'bZde/hb b‘1<axb+z @xb)ZdZ b12bll ab D, ab (6¢)

5 th 5 hTh « aWb Shbc* aWb " aWb
Qb = 6 /thO-bxde = 8 /%Cbss(aer ¢b> dz :% (ax+ ¢b) B22<ax+ (vbb) (6f)

The stresses gy, 71, and strains ¢, y; in the adhesive layers can also be derived from the mid-plane dis-
placements (u, wy), (up, Wp); and rotations ¢, and ¢y, of the top and bottom adherents in the following
forms:

K R )
A (e T 7
G h hy
71 = Goyy = h_;) |:(“b —uy) — (7b by +5¢1)], (7b)

where Ey and v are the adhesive’s Young’s modulus and Poisson’s ratio, respectively. The following 12
boundary conditions should be satisfied along the boundary edges (x = +/) of the joint system subjected
to external loading, as shown in Fig. 1(a):

N(=1) = N(=1), M(=1)=M(=1), O(=1)=0,-1I);

Nl = Nu(D), M(1) = M(D), Q1) = O,(D);

=) = Ny(=1), My(=1])= Mb(*l), Op(—1) = @b(*l)Q

D) =Ny(l), My(l)=My(1), Oy(1) = Oy(D).

where the superscript “~”” denotes the prescribed boundary conditions as obtained in Section 2.

After substituting Egs. (6) and (7) into the governing equations (5), we obtain the displacement-based
governing equations of the adhesive bonding joint:

. ou. G h h

A St =) = (B + 20 )] =0, (9a)
o', (Ow h G, h h

Dy, ox 2t Bll<axt+¢t> JF?th_j {(”b —uy) — (Ebd)b Jrjt(f%)] =0, (9b)

. (0w | Oy Eg  (wp—wy)
“(ax2+6x>+(1_ug) PR (9¢)
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. Quy Gy hy hy
L ez " [(”b—ut) - <?¢b+5¢t>:| =0, (9d)
L0, . (0w hy Go hy, hy
226—)62_322(6—x+¢b)+?%|:(ub_ut)_(?(bb—'_?qbt)] =0, (9e)
*wy Oy, Ey  (wp—w)
B — | - =0. f
22( 2 ) (1—=v3)  ho 0 (o)

The above are a series of coupled constant coefficient second-order differential equations. Here, we can
utilize the state-space method to solve them analytically (Bay, 1999). In order to construct the state equa-
tions, some new unknown functions must first be introduced, as follows:

., Ou , 0 . Ow
Zy=uw, Z,= Z] = axtv Zy = ¢u Zy= Z3 = a(itv Zs=w, Zs= Zs = axtv

, Ou , 0 , ow
Z7 = uy, 28:27:6—;’ Zy = ¢y, 210129:%, Zi = W, leiznia—xb

Using the above unknown variables, the displacement-based governing equations (9) can be represented by
a first-order state equation system in the following matrix form:

{z} =4z} (10)
and clearly in terms of Eq. (7), the peel and shear stresses in the adhesive layer can be obtained by
—Ey Ey
=|/0 00 0 ——— 0 0 0 0 0 ——— 0|{z 11
o= (1= )ho T 0] (112)
Go Gohy Go Gohy,
=|-— 0 - 000 — 0 — 0 0 0}{z}, 11b
o [ ho 2ho ho 2ho 2 (11b)
where the matrix [A4] has the following form:
[0 1 0 0 0 0 0 0 0 0 0 0 ]
Gy Gohy -Gy Gohy
—_— 0 0 0 . 0 - 0 0 0
A ho 245 hy A ho 247 ho
0 0 0 1 0 0 0 0 0 0 0 0
Goh, Goh{  B; B;, —Goh, Gohh,
0 : L0 0 1 0 0 0 0
2D7, hy 4Dy hy - D7, D}, 2Dj,hg 4D, ho
0 0 0 0 0 1 0 0 0 0 0 0
E() _EO
0 0 0 I ———— 0 0 0 0 0 0
m B, (1= )l B (=)o
0 0 0 0 0 0 0 1 0 0 0 0
—G() —G()/’ll GO _GOhb
— 0 0 0 0 : 0 0 0 0
Ao 245,k Asyh 245,k
0 0 0 0 0 0 0 0 0 1 0 0
Gohy Gohihy —Gohy, Gohy B3, B,
0 0 0 0 0 0 0
2D3, ko 4D3,hy 2D3,hy 4D%,hy D3, D,
0 0 0 0 0 0 0 0 0 0 0 1
*E() EO
0 0 0 0 ——— 0 0 0 0 -1 —¥
L B, (1= vg)ho B3, (1 —vg)ho _
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Without loss of generality, the general solution for the first-order state Eq. (10) can be expressed by

{Z} = ¥k}, (13)
where k is a vector with 12 unknown coefficients determined by the boundary conditions applied at x = +/.
Commonly, the matrix [A] has an eigenvalue involving zero with multiplicity of six.

Obviously, the matrix exponential can be derived directly by either the Cayley-Hamilton theory or the
simple Jordan method. According to the state-space approach in conjunction with the Jordan Canonical
form, the general solution (13) can be represented by

{2} = [M]e"[M] 7 {k}, (14)
where the matrix [M] is the model matrix of [4], which contains the eigenvectors and generalized eigenvec-

tors of matrix [A4]. [J]is the Jordan matrix and ¢”? is a block diagonal matrix deduced from the eigenvalues
of matrix [4] and is presented as

[ 1, 15 1, 15 T
1 x jx ﬁx Ix §x 0 0
1, 15 1,
0 1 x jx ﬁx mx 0
1, 15
0 1 X ix ﬁx 0
1
0 1 X sz 0
0 1 x 0
eVl — 0 | 0 (15)
0 el
0 e 0 .
0 e 0
0 e 0
0 et 0
0 0 er6x

The unknown constant coefficients {k} can be determined by using the twelve boundary conditions cal-
culated using Eq. (8), and the strain—stress and strain—displacement relationships (Eq. (6)). After the un-
known coefficient {k} is determined by the boundary conditions, the peel and shear stresses in the
adhesive layer can be analytically obtained by Eq. (11).

4. Numerical examples and discussion

Here, in order to confirm the above theoretical analysis model, some numerical examples are investigated
to reveal the effect of the surface bonded piezoelectric patches on the stress redistribution in the adhesive
layer as the smart single-lap joint is subjected to a combined mechanical and electrical loads. The following
material properties and geometric parameters are used for the adherents, adhesive, and piezoelectric
ceramics:

Adherents: E; = E, = 7.5 x 10'° N/m?, u; = u, = 0.25;
Adhesive: E, = 7.5 x 10° N/m?, i, = 0.33;
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Piezoelectric: E,=8.4x10""N/m?, 13=022, d3yy=-310x10"m/V; [,=05m; Lh=0.5m;
2/=0.3m, h, = 0.5 mm.

The effects of the size and location of the anti-symmetric surface bonded piezoelectric patches and the
applied electric field on the shear forces and bending moments (M,, M., Q,, and Q) in the joint edges
are first investigated. Here, two types of piezoelectric patches are discussed: one is the common piezoelectric
patch with a fully covered single-polar electrode, and the other is bimorph piezoelectric patch with a partly
covered bipolar electrode, as schematically shown in Fig. 5. For the convenience of numerical analysis, the
thicknesses of both adherents are set to 40 mm and the piezoelectric layer is taken as 1-mm thick. Using the
analytical solution introduced in Section 2, the joint-edge bending moments and shear forces are calculated
and presented in Figs. 6-8. Fig. 6 presents the influence of the applied electric field in the bonded piezoelec-
tric layers on the joint-edge bending moments and shear forces. The results indicate that adjusting the ap-
plied electric field in the piezoelectric layers can increase or decrease the joint-edge bending moments and
shear forces. It is particularly seen that the bimorph piezoelectric layer can induce more drastic influences
on the shear forces and bending moments than the commonly used single polar piezoelectric layer. More-

+V
Poling direction
— Ground
a
AV ‘— +V
Poling di rectiow ;
* - L
— Ground
b

Fig. 5. The schematic of (a) a single-polar piezoelectric electrode, and (b) a bipolar piezoelectric electrode.
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Fig. 6. Influences of the applied electric field of the surface bonded piezoelectric patches on (a) the joint-edge bending moments, and
(b) shear forces.
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Fig. 7. Influences of the length of the surface bonded piezoelectric patches subject to the application of a constant electric field
(E3 =100 kV/m) on (a) the joint-edge bending moment, and (b) shear forces.
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Fig. 8. Influences of the bonding location of the surface bonded piezoelectric patches subject to the application of a constant electric
field on (a) the joint-edge bending moment, and (b) shear forces.

over, the size effect of the bonded piezoelectric patches on the bending moments and shear forces are de-
picted in Fig. 7, revealing that the joint shear force and bending moment can be increased with an increase
in the piezoelectric length at a constant electric field and constant distance from joint edges. As for the bond-
ing location influence of the piezoelectric patches, Fig. 8 shows that the bonding location of the piezoelectric
layer has only a minimal effect on the joint shear forces and bending moments. According to the above anal-
yses, it can be clearly seen that the joint-edge shear forces and bending moments can be reduced more sig-
nificantly by the bimorph piezoelectric layer than by the commonly used single polar piezoelectric layer.
Having determined the joint-edge bending moments and shear forces, we can apply the relative bound-
ary conditions as shown in Eq. (8) and carry out the solution presented in Section 3 to determine the peel
and shear stresses in the adhesive layer. Figs. 9 and 10 display the effects of the applied electric field on the
bimorph piezoelectric layers having a constant length, and zero distance from the joint edge on the peel and
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Fig. 9. Influence of the applied electric field of the piezoelectric patches on the peel stress in the adhesive layer.
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Fig. 10. Influence of the applied electric field of the piezoelectric patches on the shear stress in the adhesive layer.

shear stresses. Fig. 9 presents the influence of the applied electric fields on the distribution of the peel stres-
ses in the adhesive layer. It can be seen that one can effectively reduce the maximum peel stress in the joint’s
edges by increasing the applied positive electric field, while the applied negative electric field can conversely
increase the maximum peel stress.

The influence of the applied electric field onto the anti-symmetrical surface bonded bimorph piezoelectric
patches on the shear stress distribution is shown in Fig. 10. It is clearly seen that increasing the applied po-
sitive electric field in the piezoelectric patches can decrease the maximum shear stresses in the joint edges,
while the applied negative electric field can increase the stress. It should be noted that as illustrated, the
shear stress does not diminish to zero at the free edge. This is due to the fact that the governing equations
were set up based on the first-order shear deformation theory; it is the fundamental assumptions of that
theory that does not allow the stress drop to zero at the free edges.

As stated, a series of finite element analyses, using the commercial software ANSYS, were also carried
out to examine the integrity of the results obtained from the proposed analytical solution. The system was
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modeled with ANSYS 8-node quadrilateral element (type Plane82). The results of these analyses, as shown
in Figs. 9 and 10, exhibit good agreement, thus validating the proposed formulations.

5. Conclusions

With the use of coupled electro-mechanical piezoelectric materials as actuators, a smart single-lap adhe-
sive joint was developed by the anti-symmetrical surface bonding of piezoelectric patches. It was demon-
strated that by adjusting the applied electric field of the piezoelectric patches, one could adaptively
control the joint-edge force and bending moment, thereby reducing the joint’s edge stress concentration.

In order to investigate the influence of the anti-symmetrical surface bonded piezoelectric patches, the
first-order shear deformation theory was employed to establish a detailed theoretical analytical model
for evaluating the peel and shear stress distributions. The solution of the peel and shear stresses was estab-
lished by using the state-space method. Moreover, the finite element method was also used to analyze the
joint and to verify the integrity of the proposed analytical solution. Both analytical and numerical results
indicate that appropriate piezoelectric patches (i.e. the bimorph piezoelectric) can be used to effectively re-
duce the concentration of peel and shear stresses in the adhesive layer, thereby improving the performance
of the joint.
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